IHC Made Affordable ## Pan-TRK Rabbit Polyclonal Antibody RP176 PDR176 PDR176-HL **This data sheet is applicable to all sizes (volume) of product. Actual volume is indicated on vial. Document #: DS-0631-B Effective Date: 07/13/2021 | Immunogen | Species | Primary
Antibody Diluent | |---|---------|-----------------------------| | Peptide-KLH conjugate with human Trk
A (777-796aa) | Rabbit | K004 | Lot specific Ig concentration available upon request. | Catalog # | Description | |-----------|---| | RP176 | Concentrated antibody for use with Diagnostic BioSystems
PolyVue™ Plus - Two Step Detection System | | PDR176 | Ready to use antibody for use with Diagnostic BioSystems PolyVue™
Plus - Two Step Detection System | | PDR176-HL | Ready to use antibody in RFID tagged vials for use on the
HighLighter Staining System | #### **Intended Use** For In Vitro Diagnostic Use. This product is intended for qualitative immunohistochemistry with normal and neoplastic formalin-fixed, paraffinembedded tissue sections, to be viewed by light microscopy. Clinical interpretation of staining results should be accompanied by histological studies with proper controls. Patients' clinical histories and other relevant diagnostic tests should be utilized by a qualified person(s) when evaluating and interpreting results. ## **Summary and Explanation** Neurotrophic tyrosine kinase receptor (NTRK) is a family of 3 proto-oncogenes including NTRK1, NTRK2, and NTRK3 which encode Trk A, Trk B, and Trk C proteins, respectively. The latter are involved in biological processes such as neuronal survival, differentiation, and plasticity under physiological circumstances. In various cancers, oncogenic fusions involving the kinase domain of NTRK1, 2, or 3 are present. Pan-Trk IHC is a time- and tissue-efficient screen for NTRK fusions, particularly in driver-negative advanced malignancies and potential cases of secretory carcinoma and congenital fibrosarcoma. Pan-Trk IHC can help determine whether translation occurs for novel NTRK rearrangements. #### **Format** Purified immunoglobulin fraction of rabbit antiserum containing sodium azide as a preservative. ## **Principles of the Procedures** Antigen detection by immunohistochemistry (IHC) is a two-step process involving first, the binding of a primary antibody to the antigen of interest, and second, the detection of bound antibody by a chromogen. The primary antibody may be used in IHC using manual techniques or using Diagnostic BioSystems Automated Montage 360™ Staining System or HighLighter Staining System. #### **Dilution of Primary Antibody** Diagnostic BioSystems ready to use antibodies have been optimized for use with the recommended Diagnostic BioSystems Detection System and do not require further dilution. Further dilution may result in loss of sensitivity. The user must validate any such change. Diagnostic BioSystems concentrated antibodies must be diluted in accordance with the staining procedure when used with the recommended Diagnostic BioSystems detection system. Use of any detection methods other than the recommended systems and protocols require validation by the user. Antibody dilutions should be appropriately adjusted and verified according to the detection system used. ## **Materials Required But Not Provided** Some of the reagents and materials required for IHC are not provided. Pretreatment reagents, detection systems, control reagents and other ancillary reagents are available from Diagnostic BioSystems. Please refer to the Diagnostic BioSystems website at www.dbiosys.com #### Storage and Handling Store at 2-8°C. This antibody is suitable for use until the expiration date when stored at 2-8°C. Do not use product after the expiration date printed on vial. If reagents are stored under conditions other than those specified here, they must be verified by the user. Diluted reagents should be used promptly. Unused portions of antibody preparation should be discarded after one day. The presence of precipitate or an unusual odor indicates that the antibody is deteriorating and should not be used. Positive and negative controls should be run simultaneously with all patient specimens. If unexpected staining is observed which cannot be explained by variations in laboratory procedures and a problem with the antibody is suspected, contact Diagnostic BioSystems Technical Support at (925) 484-3350, extension 2 or techsupport@dbiosys.com. #### Specimen Collection and Preparation Tissues fixed in 10% formalin are suitable for use prior to paraffin embedding. Consult references (Kiernan, 1981: Sheehan & Hrapchak, 1980) for further details on specimen preparation. The user is advised to validate the use of the products with their tissue specimens prepared and handled in accordance with their laboratory practices. #### Precautions This antibody contains less than 0.1% sodium azide. Concentrations less than 0.1% are not reportable hazardous materials according to U.S. 29 CFR 1910.1200, OSHA Hazard Communication and EC Directive 91/155/EC. Sodium azide (NaN3) used as a preservative is toxic if ingested. Sodium azide may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal, flush with large volumes of water to prevent azide build-up in plumbing. (Center for Disease Control, 1976, National Institute of Occupational Safety and Health, 1976). Specimens, before and after fixation and all materials exposed to them, should be handled as if capable of transmitting infection and disposed of with proper precautions. Never pipette reagents by mouth and avoid contacting the skin and mucous membranes with reagents and specimens. If reagents or specimens come in contact with sensitive areas, wash with copious amounts of Diagnostic BioSystems Emergo Europe Prinsessegracht 20 2514 AP, The Hague The Netherlands Tel: (31) (0) 70 345 8570 # **IHC Made Affordable** water. Microbial contamination of reagents may result in an increase in nonspecific staining. Incubation times or temperatures other than those specified may give erroneous results. The user must validate any such change. The MSDS is available upon request. #### **Treatment of Tissues Prior to Staining** Place the slides in the recommended antigen retrieval solution using Diagnostic BioSystems Montage Opus™ Antigen Retrieval System if staining is performed manually or with Montage PolyVue Plus™ Auto Detection System. Allow slides to cool down for 20 minutes prior to staining. ## **Staining Procedure** Refer to the following table for conditions specifically recommended for this antibody. Refer to the Diagnostic BioSystems PolyVue™ Plus—Two Step Detection System or Montage PolyVue Plus™ Auto Detection System or HighLighter core kit for HighLighter Staining System for guidance on specific staining protocols or other requirements. | Parameter | Diagnostic BioSystems Recommendations | |-------------------------------|--| | Positive Control | Cerebral cortex tissue | | Concentrated Dilution | 1:50-1:100 | | Pretreatment | EDTA Buffer pH 8.0 (Manual/ Montage) | | Pretreatment for HL | Tris-EDTA Buffer pH 9.0 (EA1, K102-HL) | | Incubation Time & Temperature | 30 min @ RT | | Detection System | PolyVue™ Plus - Two Step Detection System or
Montage PolyVue Plus™ Auto Detection System for
Montage 360 System or HighLighter core kit for
HighLighter Staining System | | Tissue Type | FFPE | ## **Quality Control** Refer to CLSI Quality Standards for Design and Implementation of Immunohistochemistry Assays; Approved Guideline-Second edition (I/LA28-A2) CLSI Wayne, PA USA (www.clsi.org). 2011. ## **Troubleshooting** Contact Diagnostic BioSystems Technical Support at (925) 484-3350, extension 2, techsupport@dbiosys.com or your local distributor to report unusual staining. ## **Cellular Localization** Cytoplasm ### **Limitations of the Procedure** Immunohistochemistry is a complex technique involving both histological and immunological detection methods. Tissue processing and handling prior to immunostaining can also cause inconsistent results. Variations in fixation and embedding or the inherent nature of the tissue may cause variations in results (Nadji and Morales, 1983). Endogenous peroxidase activity or pseudoperoxidase activity in erythrocytes and endogenous biotin may cause non-specific staining depending on detection system used. Tissues containing Hepatitis B surface Antigen (HBsAg) may give a false positive with horseradish peroxidase systems (Omata et al, 1980). Improper counterstaining and mounting may compromise the interpretation of results. ## **Performance Characteristics** Diagnostic BioSystems 6616 Owens Drive The optimum antibody dilution and protocols for a specific application can vary. These include, but are not limited to: fixation, heat-retrieval method, incubation times, and tissue section thickness and detection kit used. Due to the superior sensitivity of these unique reagents, the recommended incubation times and titers listed are not applicable to other detection systems, as results may vary. The data sheet recommendations and protocols are based on exclusive use of Diagnostic BioSystems products. Ultimately, it is the responsibility of the investigator to determine optimal conditions. These products are tools that can be used for interpretation of morphological findings in conjunction with other diagnostic tests and pertinent clinical data by a qualified pathologist. #### References - I. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett2001;169:107-14. 10.1016/S0304-3835(01)00530-4 - II. Huang EJ, et al. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem2003;72:609-42. 10.1146/annurev.biochem.72.121801.161629 - III. Laé M, et al. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009 Feb; 22(2):291–8. - IV. Sheng WQ, et al. Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffinembedded tissues. Am J Clin Pathol. 2001; 115(3):348-355.